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ABSTRACT

We show that there is strong commonality in the volatility of a wide range of diversified

equity portfolios. Common factor volatility (CFV) exists even when factor or anomaly re-

turns are market-adjusted and does not appear to be attributable to common microstructure

noise or a lack of diversification. We show that CFV closely relates to previously identified

commonality in idiosyncratic volatility, implying that a common volatility feature pervades

the entire spectrum of equity return variation. Consistent with the interpretation of CFV

as a latent, pervasive equity risk feature, CFV outperforms traditional measures of market

volatility in forecasting excess stock market returns. In addition, deviations of factor volatil-

ities from long-run equilibrium relations with CFV forecast innovations in future factor

volatility. Several alternative tests indicate only a weak relation between CFV and time-

variation in fundamental uncertainty. We also do not find strong support for the hypothesis

that variation in growth options, operating or financial leverage drives CFV. The ultimate

sources of common equity volatility dynamics therefore constitute an important unresolved

puzzle in finance.

∗We thank John Y. Campbell, Kim Christensen, Gregory Kadlec, Guilherme Salome and conference and
seminar participants at the Fourth International Workshop on Financial Econometrics, the Duke University
Financial Econometrics Workshop, Binghamton University, Oklahoma State University, and Virginia Tech
for helpful comments. Author contact information: Matthew Linn (mlinn@isenberg.umass.edu), Nishad
Kapadia (nkapadi@tulane.edu), and Bradley Paye (bpaye@vt.edu).



Risk occupies a central role in financial economics. Asset pricing theories typically partition

equity risk into components attributable to a set of systematic factors and ‘idiosyncratic’

components that disappear in well-diversified portfolios. While important and interesting

along many dimensions, this decomposition obscures the role of dynamic relations among

the components of equity risk. This paper presents novel evidence that, in fact, a latent,

common volatility feature pervades the entire spectrum of return variation. This common

volatility component drives low-frequency time-variation in the volatility of broad stock

indices (‘the market’), alternative diversified equity factors, long-short anomaly portfolios,

and idiosyncratic return components. The presence of a strong common volatility feature

has important implications for asset pricing and the modeling and forecasting of equity risk.

To appreciate the essence of our contribution, consider a standard factor model for stock

returns:

ri,t =
∑

fj,tλj + εi,t

where ri,t is the excess stock return for firm i at time t, λs are factor exposures, and the factors

f are orthogonal to each other and to the idiosyncratic return ε. The fact that εi ⊥ εk does

not imply ε2i ⊥ ε2k. Indeed, recent literature identifies a common component in the volatility

of idiosyncratic returns (see, e.g., Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016)).

Similarly, the fact that fj ⊥ fk for j 6= k does not imply that f 2
j ⊥ f 2

k . In contrast to

prior work concerning idiosyncratic returns, our paper assesses the degree of commonality

in time-varying volatility among systematic factors fj,t. We document evidence of common

factor volatility across a wide range of equity factors and diversified portfolios. Commonality

in volatility does not arise mechanically due to common market exposure and analyses of

a range of alternative factor sets produce nearly identical proxies for latent common factor

volatility. In addition, the common feature we identify in factor volatility closely relates to

the previously identified common component in idiosyncratic return volatility. The evidence

therefore indicates that a single common volatility feature drives low-frequency variation

across all components of equity risk.

The strong common component we document in factor volatility is not obvious ex ante.
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It is not clear, for example, that time-variation in the volatility of the Fama-French size fac-

tor should exhibit much commonality with time-variation in the volatility of the momentum

factor or the mispricing factor recently proposed by Stambaugh and Yuan (2016). Lead-

ing asset pricing theories such as the arbitrage pricing theory (APT) of Ross (1976) and

Chamberlain and Rothschild (1983) impose few clear restrictions regarding the nature of

co-movement among factor volatilities. From this perspective, the extent of commonality

we document in factor volatility is arguably surprising. Common factor volatility has asset

pricing implications concerning the properties of the stochastic discount factors (SDFs) as-

sociated with conditional factor models. Specifically, strong commonality in factor volatility

implies significant time-variation in maximum conditional Sharpe ratios, or, equivalently, a

high volatility of the SDF unless factor premia also co-move in correlated fashion.1 Empiri-

cally, we show that CFV outperforms traditional measures of market volatility in forecasting

excess stock market returns, especially at shorter horizons over which earlier studies often

find an insignificant risk-return relation.

Our evidence concerning common volatility variation also has implications concerning

the economic sources of time-varying volatility (Schwert (1989), Engle and Rangel (2008),

etc.) and applications to the important problem of forecasting volatility. From a forecasting

perspective, we show that deviations of factor volatilities from long-run equilibrium relations

with CFV forecast innovations in future factor volatility. Similarly, factor volatility forecast-

ing models that include CFV in addition to lagged factor volatility deliver more accurate

out-of-sample forecasts relative to benchmarks that exclude CFV. These results suggest that

CFV plays a central role in determining the dynamics of equity factor volatility for a wide

spectrum of traded factors including the market factor. Turning to the sources of time vari-

ation in equity volatility, we test whether the dynamics of common factor volatility appear

to be explained by time-variation in economic or fundamental uncertainty. A variety of

alternative tests indicate only a weak relation between CFV and fundamental uncertainty.

1The presence of strong common factor volatility relates to recent evidence that ‘volatility-managed’
portfolios produce significant alphas and Sharpe ratio increases due to the fact that changes in volatility are
not offset by proportional changes in expected returns (Moreira and Muir (2017)).
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The commonality in volatility is much more pronounced in traded equity returns relative

to fundamental macroeconomic or cash flow volatility. We also do not find strong support

for the hypothesis that variation in growth options, operating or financial leverage drives

CFV. The ultimate sources of common equity volatility dynamics therefore constitute an

important unresolved puzzle in finance.

Our empirical analysis proceeds as follows. We first extract measures of common volatil-

ity across alternative sets of diversified factors, e.g., characteristics-based factors or statistical

factors. We consistently find strong evidence of commonality in factor volatility. The com-

mon component explains an economically large fraction of variation in factor volatility series.

For example, the common volatility component extracted from a broad set of characteristics-

based factors explains 70-80% of total variation in factor volatilities. We obtain similar results

for a range of alternative factors, including tracking portfolios for macroeconomic factors in

the spirit of Chen, Roll, and Ross (1986), industry factors, a large set of long-short anomaly

portfolios, and statistical factors in the spirit of Connor and Korajczyk (1986). Moreover,

the common factor volatility series extracted from these alternative factor sets are highly

correlated, implying that the dynamics of common factor volatility are largely invariant to

the particular specification of factors.

We next assess the extent to which there exists a common component in the time-varying

correlations among factor returns.2 Here we find substantially weaker results: the first

principal component extracted from various sets of factor correlations typically explains

only a small fraction of total variation among these correlations. Moreover, in contrast to

common factor volatility, common correlation components extracted from different sets of

assets differ materially, and common correlation does not strongly correlate with economic

conditions. The strong evidence of commonality in factor volatility that we observe, coupled

with weak commonality in correlations, suggests that equity factor returns are approximately

consistent with the pure variance common feature (PVCF) model introduced by Engle and

2Given a standard factor model, it is always possible to produce an equivalent set of unconditionally
uncorrelated factors via rotation. However, this does not preclude the possibility of conditional correlation
dynamics among factors. Our analysis explores to what extent there exists commonality in such dynamics.
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Marcucci (2006). Under this model, a small number of latent variance features drive all factor

volatilities, but the model does not require that the covariances (and specifically correlations)

also depend on these same features.3

Measures of common factor volatility (CFV) positively correlate with market volatility.

This raises the possibility of a relatively uninteresting explanation for observed commonality

among non-market factors: perhaps factor and anomaly returns exhibit time-varying market

exposure that drives co-movement in factor variances.4 To address this potential critique, our

main results employ volatility proxies constructed using daily factor or anomaly returns that

are orthogonalized with respect to market returns. With or without this orthogonalization,

we find strong evidence of common factor volatility (CFV), and the time series properties of

CFV are similar. Consequently, we conclude that explicit market exposure does not drive

the commonality we document. We also reject the hypothesis that CFV spuriously reflects

commonality in time-varying market frictions, such as aggregate bid-ask spread variation.

We next consider the relation between common factor volatility and common idiosyncratic

volatility documented in previous studies (e.g., Herskovic et al. (2016)). It is conceptually

possible that CIV generates spurious common factor volatility due to insufficiently diversified

factor portfolios. However, we continue to find strong evidence of common factor volatility

using broad, equal-weighted factor and industry portfolios. It is unlikely that truly firm-

specific return variation contributes appreciably to these portfolio returns. We also consider

the converse hypothesis that unmodelled systematic exposures explain apparent commonality

in idiosyncratic volatility. To address this conjecture, we extract common volatility measures

from alternative portions of the spectrum of return variation based on a statistical factor

decomposition. We continue to find strong evidence of commonality in volatility irrespective

3Engle and Kozicki (1993) introduce the analysis of common features among time series, generalizing
prominent special cases such as cointegration, in which common stochastic trends drive long-run properties
of a larger set of time series (Engle and Granger (1987)).

4Industry portfolios offer a stark example, as these long-only portfolio returns contain significant market
exposure and apparent co-movement in industry return volatility might simply reflect common exposure
to (time-varying) market risk. Prominent characteristics-based factor models involve factors constructed
as long-short portfolios. This procedure reduces, but does not necessarily eliminate, market correlation.
Unconditionally uncorrelated factors can also exhibit nonzero conditional correlations.
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of whether we examine the leading statistical factors, the final (weakest) statistical factors, or

any set of factors between.5 The common volatility series extracted from these alternative

sets of factors are very highly correlated. This indicates that a single common volatility

feature exists throughout the spectrum of return variation, including strong factors, weak

factors, and idiosyncratic return components.

If common factor volatility captures long-run equilibrium relations among factor volatility

series, deviations from the long-run relation should forecast future innovations in factor

volatility. We test implications associated with this hypothesis by estimating a simple error

correction model. We first project factor volatility onto CFV for our broad set of factors,

industry portfolios, and anomalies. With R2s of 40%-70%, these regressions reiterate the

pervasiveness of CFV. In a second step we investigate whether residuals from projections of

volatility series on CFV, which can be interpreted as deviations from a long-run equilibrium

relation with CFV, Granger-cause the corresponding volatility series. We find that they do.

Deviations from the equilibrium relation predict reversals in future volatilities for the market

as well as for most of the large set of equity factors we consider, even after controlling for

lags of each series. The predictive power of equilibrium deviations with respect to CFV is

economically, as well as statistically, significant, and CFV improves factor volatility forecasts

relative to benchmarks out-of-sample as well as in-sample. To the extent that CFV reflects

a ubiquitous equity risk feature, it is also of interest to test for a positive risk-return relation

using CFV as the risk proxy as opposed to conventional risk proxies based on the volatility of

a broad market index. We present evidence that CFV positively and significantly forecasts

excess stock market returns over a variety of horizons. The predictive power of CFV exceeds

that of a traditional stock return volatility measure, especially at shorter horizons.

The final portion of the paper explores the potential sources of commonality in factor

volatility. Perhaps the most obvious candidate explanation is that common variation in

fundamental uncertainty drives associated commonality in the various components of stock

5We also construct random long short portfolios by allocating stocks randomly into terciles every year and
computing returns for the portfolio long the top and short the bottom tercile. We show that the volatility
of these 10 portfolios also shares a common component, which is highly correlated with CFV.
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return volatility. Although our measure of common volatility is persistent and cyclical,

similar to most prominent risk measures in the literature, we show that common volatility

only weakly correlates with a wide range of measures of aggregate economic uncertainty in

levels, first differences, and long-run components.6 Consequently, much of the variation in

the common risk concept captured by CFV appears specific to the space of equity markets.

We conduct an additional test concerning the relation between fundamental uncertainty

and common equity volatility that focuses on narrow time windows around firm earnings

announcements. Earnings announcements should coincide with ‘lumpy’ arrivals of news con-

cerning fundamentals and therefore we analyze the relation between the common component

in the volatility of fundamental news and the common component in stock return variation

associated with this news. Specifically, we construct measures of aggregate variation in the

volatility of firms’ earnings announcement surprises, as well as measures of aggregate vari-

ation in the volatility of stock returns during a narrow window around earnings announce-

ments. There is a strong common component in both the earnings-based volatility measure

as well as the return reaction-based volatility measure. We find evidence of a relatively strong

(positive) relation between the common component of the volatility of market reactions to

earnings news, but not with respect to the common component of the volatility of earnings

surprises themselves. This indicates that variation in CFV relates less to common variation

in the magnitude of shocks to fundamentals, and more to common variation in the virulence

of market reactions to news. It is possible that a form of aggregate time-varying leverage

explains this pattern of results. Therefore, in a second set of tests, we examine the relation

between CFV and measures of financial and operating leverage, as well as proxies for the

aggregate level of growth options. Results indicate that these measures only weakly relate

to CFV. Our return-forecasting results lend some credence to an alternative hypothesis that

CFV reflects discount rate variation. However, whether CFV ultimately relates more closely

to discount rate variation or time-varying, behaviorally-driven ‘excess volatility’ in the spirit

6These include the economic policy measure of Baker, Bloom, and Davis (2016), the macroeconomic
uncertainty measure of Jurado, Ludvigson, and Ng (2015), and a measure of real economic uncertainty
developed by Ludvigson et al (2018).
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of Shiller (1981) remains unresolved.

Relatively few papers focus on characterizing time-varying volatility for factors other

than the market. Connor, Korajczyk, and Linton (2006) estimate a dynamic approximate

factor model for US equity returns that includes a common feature in both factor variation

and asset-specific variation. They model the conditional volatility associated with a par-

ticular linear combination of the latent factors using a parametric approach that includes

both a secular trend and cyclical dynamics.7 A stream of research finds a common fac-

tor in the idiosyncratic volatilities of individual firms (e.g., Campbell, Lettau, Malkiel, and

Xu (2001), Connor et al. (2006), Duarte, Kamara, Siegel, and Sun (2014), Herskovic et al.

(2016)), in contrast to our focus on the volatility of systematic factor returns. Christof-

fersen, Lunde, and Olesen (2019) identify common variation in the volatility of commodities

post-financialization. This common commodity volatility feature correlates positively with

equity market volatility. Christoffersen and Langlois (2013) find evidence of asymmetric tail

dependence across the Fama-French and Carhart factors. Campbell et al. (2001) report that

market, average industry, and average individual firm volatilities are correlated, but they do

not explicitly analyze the volatility of other systematic equity factors. Barroso and Maio

(2019) model time-variation in factor volatility in the context of analyzing the risk-return

trade-off for prominent characteristics-based factors. Engle and Marcucci (2006) develop the

pure variance common feature model and apply it to Dow Jones stocks, concluding that a

few variance features capture commonalities in volatility for these stocks.

7In contrast to the semi-parametric approach in Connor et al. (2006), we adopt a ‘realized volatility’
approach to nonparametrically measure factor variances. Connor et al. (2006) focus on (latent) approximate
factor models, whereas we extract measures of common volatility for an array of alternative classes of factor
models and show that these produce virtually the same common volatility series. Connor et al. (2006)
restrict attention to the aggregate variance of the factors they extract; they do not investigate whether the
variances of individual factors are correlated with each other. We complement their results by showing that
there is a single common factor that explains a large proportion of the variance of a range of statistical and
characteristic-based factors.
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1. Background and Motivation

Consider a standard factor model for excess returns on N stocks:

Rt = ΛFt + et, t = 1, . . . , T, (1)

where Rt denotes an N × 1 vector of excess stock returns, Ft denotes an K × 1 vector

of factor realizations with K << N , Λ denotes an N × K matrix of factor loadings, and

Cov(Ft, et) = 0. In matrix form, the model of Eq. (1) can be written

R︸︷︷︸
T ×N

= F︸︷︷︸
T ×K

Λ′︸︷︷︸
K ×N

+ e︸︷︷︸
T ×N

. (2)

At this stage, we leave the identity of the factors Ft unspecified. In particular, the factors

might be observed or latent. Below we discuss alternative approaches to obtaining factors.8

Under the assumption that Et−1(Fte
′
t) = 0 for all t, we can write the conditional covari-

ance of excess returns as:

ΩR,t = Λ ΩF,t Λ′ + Ωe,t, (3)

where ΩR,t denotes the N×N conditional covariance matrix of excess returns, ΩF,t represents

the K×K factor conditional covariance matrix, and Ωe,t is the N×N conditional covariances

matrix for idiosyncratic errors. Equation (3) is a conditional version of the usual expression

for the unconditional variance of returns under a factor model.

Our paper can be seen in the context of the large literature on multivariate volatility

models (see Bauwens, Laurent, and Rombouts, 2006, for a survey). Multivariate volatility

models such as the VECH model in Bollerslev, Engle, and Wooldridge (1988) specify dynam-

8When the factors are latent, they are identified only up to arbitrary normalizations. A common nor-
malization imposes (1/N)Λ′Λ = IK and ΩF is diagonal. Connor and Korajczyk (1986, 1988) develop an
approach to consistently estimate latent factors when N → ∞. Subsequent papers extend the approach
to settings with N and T → ∞, whilst also permitting heteroskedasticity and limited dependence in the
cross-section and time series (e.g., Bai (2003)).
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ics for each element of the covariance matrix of returns, ΩR,t. Factor volatility models, such

as the factor ARCH model of Engle, Ng, and Rothschild (1990) or the heteroskedastic latent

factor model of Diebold and Nerlove (1989), reduce the number of parameters to be esti-

mated by exploiting the factor structure in returns as in Eq. (3). They obtain the dynamics

of ΩR,t by modelling the dynamics of the elements of ΩF,t. These models link commonality

in variances across assets to common factor exposures in returns. They typically do not

require/model commonality in the variance of the factors themselves. In contrast, the focus

of our paper pertains to the extent to which the volatility dynamics of ΩF,t itself contain a

common component.9

The conditional covariance matrix of factors can be decomposed as ΩF,t = DF,tPF,tDF,t,

where DF,t is a K × K diagonal matrix of conditional factor standard deviations and PF,t

is the K × K conditional factor correlation matrix. Letting ht = diag(D2
F,t) denote the

K × 1 vector of conditional factor volatilities, where diag(X) extracts the vector of diagonal

elements from matrix X, we hypothesize that equity factors follow a version of the pure

variance common feature (PVCF) model introduced by Engle and Marcucci (2006):

ht = ΓCFVt + diag(Σ̃t), (4)

where CFVt denotes an M × 1 vector of common components of factor volatility such that

M < K, Γ denotes a K × M matrix of loadings on the common component CFVt, and

diag(Σ̃t) indicates a K × 1 vector describing ‘idiosyncratic’ conditional variances for the set

of factors.10 In this setup, assets can exhibit common dynamics in their variances even if

they do not share exposure to the same (orthogonal) factors in returns, because the variances

of the factors contain a common component. The PVCF model of Equation (4) posits that

conditional variances depend on a small number of variance factors without requiring that

covariances/correlations depend on these same factors.11 We primarily focus on the case of

9This is trivially true in a single factor model (K = 1). We focus on multi-factor models in this paper,
noting that such models are extremely common both in the literature and in practice.

10Latent factor models require an additional normalization assumption. See, e.g., Connor et al. (2006).
11Similar to cointegration (Engle and Granger (1987)), the PVCF model represents a special case of a

9



a single common volatility factor (M = 1), in which case CFVt is a scalar time series and Γ

is a K × 1 vector of corresponding loadings.

Under the PVCF model, there exists a linear combination of the factor volatility series

that lacks the feature, i.e., that exhibits purely idiosyncratic variation. However, this does

not imply that there exists a linear combination of the traded factors – a feasible portfolio

fully invested in these factors or stocks underlying the factors – that lacks exposure to the

common volatility feature. Indeed, a standard minimum variance argument implies that this

will not be the case and therefore common factor volatility represents a fundamental form

of equity risk.

Theory provides limited guidance regarding the relative importance of the common

volatility feature(s) CFVt versus the idiosyncratic component of time-varying factor volatil-

ity in Equation (4). In particular, nothing in the underlying framework of an approximate

statistical factor model, along with the corresponding conditions necessary to deliver the

arbitrage pricing theory (APT) of Ross (1976) and Chamberlain and Rothschild (1983) nec-

essarily implies the existence of a strong common component in factor volatility. Indeed, it is

possible to posit an approximate statistical factor model for which the standard APT result

holds, and such that factor volatilities vary over time but in a completely idiosyncratic man-

ner. On the other hand, consumption-based asset pricing models typically imply a stochastic

discount factor that involves a small number of macroeconomic risks, e.g., shocks to current

and long run future consumption growth in prominent long run risk model of Bansal and

Yaron (2004). To the extent that a set of traded return factors Ft jointly capture these

few underlying macroeconomic risks, it seems plausible to expect associated comovement in

factor volatility. Ultimately, therefore, the extent of common variation in factor volatility is

an empirical question and represents the primary aim of our study.12

common feature among economic time series. Engle and Kozicki (1993) formally define a common feature
as arising whenever a set of time series exhibit the feature, but a linear combination of the series fails to
exhibit the feature.

12It is also possible that, in addition to a common component in factor volatility, there also exists common-
ality in time-variation among factor correlations contained in PF,t. In addition to measuring the common
component in factor volatility CFVt, we also explore the extent to which there is a common component in
time-varying factor correlations.
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It is necessary to specify factors in order to empirically measure commonality in time-

varying volatility. One possible approach is to estimate a latent factor model using, for

example, principal components in the spirit of Connor and Korajczyk (1986, 1988), etc.

However, there are many other approaches to specifying factors in the literature, includ-

ing characteristics-based factors, factors based on portfolios intended to mimic underlying

macroeconomic risks, and so forth. Rather than champion a particular approach, we consider

a wide range of factor models. Ultimately, we demonstrate that essentially the same common

volatility component emerges irrespective of the particular factor model specification.

Many theoretically-motivated factor models include a market factor defined as the excess

return on a broad value-weighted portfolio. In addition, empirical applications of statistical

approaches to factor models typically identify a first factor that is highly correlated with the

excess return on a broad value-weighted portfolio. Given that market volatility dynamics

are relatively well-understood, we focus on assessing the degree and nature of commonality

in the volatility of factors beyond the market factor. We therefore extract measures of a

common component from sets of factors that exclude the market factor. We then compare

the resulting common factor volatility series CFVt with both market volatility and a measure

of the common idiosyncratic volatility CIVt. Ultimately, we show that there is a substantial

degree of comovement among these three series.

2. Commonality in Factor Volatility

2.1. Measuring Common Factor Volatility

We measure factor volatility using a nonparametric approach motivated by the fact that

high frequency return observations enable the precise measurement of volatility (see, e.g.,

Andersen, Bollerslev, Diebold, and Labys (2003)). Let t index periods at a frequency over

which we aim to measure factor volatility, and j ∈ [1, 2, . . . Jt] index higher frequency obser-

vations of factor returns within the t-th period. In most applications t will index monthly

observations with j indexing trading days within a month. In certain cases t will instead
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be annual and j will index months within the year, owing to data limitations. Given an

arbitrary set of K traded factor returns, Fj,t denotes the K × 1 vector of factor returns on

the j-th day of period t and Fk,j,t denotes the k-th factor return on this day. We measure

raw factor variances as the so-called ‘realized variance’ computed as the sum of squared daily

factor returns during the corresponding period:

σ̂2
F,k,t =

J∑
j=1

F 2
k,j,t. (5)

Raw factor volatility σ̂F,k,t equals the square root of the variance defined in Eq. (5).

In addition to analyzing raw factor volatility series, we also measure the volatility of

factor returns that are orthogonalized with respect to the market factor. Let MKTj,t denote

the excess return on a market proxy. Define a market-adjusted factor return as:

εk,j,t ≡ Fk,j,t − β̂k,j,tMKTj,t (6)

where β̂k,j,t denotes an estimate of the (potentially time-varying) market beta. We then

compute market-adjusted factor variances as:

σ̂2
F,k,t(market adjusted) =

J∑
j=1

e2k,j,t, (7)

with associated factor volatilities equal to the square root of Eq. (7).

We base market beta estimates for factors on an OLS regression of returns for the k-th

factor on market excess returns estimated over a specified window. There is a form of bias-

variance trade-off with respect to the window choice. Betas likely change over time, and a

narrower window reduces bias associated with such time-variation. On the other hand, a

tighter window reduces the precision of estimates. For most reported results, we adjust factor

returns using a beta estimate computed from an OLS regression of daily factor returns on

daily data over the corresponding calendar year. Section 3 considers beta estimation issues

and robustness of results to alternative windows.
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We consider two approaches for measuring the common component in factor volatility.

The first defines the common component as the cross-sectional average of the volatilities for

the corresponding factor set. The second approach defines the common component as the

first principal component extracted from the standardized factor volatility series. The two

approaches generally produce highly correlated common component series.

2.2. Factor Sets

This section describes the various sets of factors we analyze. Our primary proxy for

the market factor MKT is the market excess return factor from the Fama-French research

factor library. The underlying market return measure includes CRSP firms listed on NYSE,

Nasdaq, or AMEX with share codes of 10 or 11. When a risk-free rate is required, we use

the one-month Treasury bill rate from Ibbotson Associates.

We now describe the particular factor sets considered in our analysis. Data sources and

additional details for each set of factors appear in the Supplementary Appendix.

1. Characteristics-based factors: A large number of factors have been proposed and

we analyze only a subset of prominent factors from the literature. These include the size

(SMB) and value (HML) factors from the prominent three-factor model of Fama and

French (1993), and the investment (RMW), and profitability (CMA) factors recently

proposed by Fama and French (2015) in an extended model. We also analyze several

more recently proposed characteristics-based factors. These include two mispricing

measures proposed by Stambaugh and Yuan (2016), one pertaining to management

decisions (MGMT) and the other related to performance (PRF), the ‘betting against

beta’ (BAB) factor proposed by Frazzini and Pedersen (2014) and the ‘quality minus

junk’ (QMJ) factor constructed by Asness, Frazzini, and Pedersen (2014).13

13Our empirical approach relies on the availability of relatively high-frequency factor returns (daily) to
construct measures of return variation and co-variation. This requirement excludes some prominent factors
in the literature. For example, we do not analyze the traded liquidity factor of Pástor and Stambaugh (2003)
because the factor is only available at a monthly frequency. In robustness checks, we substitute alternative
investment and profitability factors from Hou, Xue, and Zhang (2015) and obtain similar results. We thank
Ken French, Robert Stambaugh, Lu Zhang, and AQR for making factor return data available.
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2. Anomaly long-short portfolios: Although popular in practice, standard characteristics-

based factor models appear to be imperfect. Indeed, Kozak, Nagel, and Santosh (forth-

coming) argue that characteristics-sparse models cannot adequately summarize the

cross-section of expected stock returns. Consequently, we also analyze returns for

portfolios constructed based on characteristics associated with a large number of stock

return anomalies identified in the literature. We consider several alternative sets of

anomaly portfolios. A first approach follows Green, Hand, and Zhang (2017), who sort

firms into deciles each month based on each individual characteristic and form long-

short portfolios using extreme deciles. We form and update portfolios on a monthly

basis as in Green et al. (2017) (dubbed GHZ anomalies), but construct daily returns

for these portfolios in order to form volatility measures. A second set of returns consist

of the daily anomaly returns constructed and analyzed by Kozak et al. (forthcoming),

referenced as KNS Anomalies. In both cases, we omit some anomalies from the original

sets due to limited historical coverage. The resulting set of 62 GHZ anomaly portfo-

lios covers the period 1964.7–2018.12 and the set of 41 KNS anomaly returns covers

1963.11–2017.12.

3. Industry Portfolios: This set of factors is based on industry returns.14 We base the

industry factors based on Fama-French value-weighted and equal-weighted 12, 17, and

30 industry portfolios. We designate variations as, e.g., ‘INDU-12VW.’ In contrast to

the characteristics-based factors and anomaly returns discussed previously, the industry

factors are long-only portfolios.

4. Macroeconomic factors: Following Chen et al. (1986), we consider a set of macroe-

conomic risk measures. These include the growth rate in industrial production, un-

expected inflation, the change in expected inflation, the term premium, the default

14The returns on such portfolios constitute factor returns under the simple form of fundamental factor
model in which (observed) factor loadings correspond to a set of K mutually exclusive dummy variables
representing the industry membership for each firm. This is sometimes termed the ‘BARRA-type industry
factor model,’ as it was developed by Bar Rosenberg, founder of BARRA Inc. (see, e.g., Grinold and Kahn
(2000) and Conner et al (2010)).
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spread, a measure of real consumption growth, and the log change in oil prices. We

follow Cooper and Priestley (2011) and create mimicking portfolios for all factors. Fac-

tor mimicking portfolios are created based on projections of monthly macroeconomic

risk series on monthly returns for 100 portfolios. Daily mimicking portfolio returns are

computed based on underlying monthly tracking portfolios to measure volatility. The

Supplementary Appendix provides additional details.

5. Statistical Factors: We construct statistical factors based on the principal compo-

nents extracted from a large set of daily portfolio returns. We utilize portfolios returns,

rather than daily returns for individual stocks in order to mitigate the potential influ-

ence of microstructure effects and extreme daily returns for individual stocks on the

principal components. To construct factors, we follow the ‘Risk Premium PCA’ (RP-

PCA) approach recently proposed by Lettau and Pelger (forthcoming). This approach

extends the standard (asymptotic) Principal Component Analysis (PCA) (Connor and

Korajczyk (1986), Connor and Korajczyk (1988)) method by incorporating a penalty

term that reflects the magnitude of cross-sectional pricing errors. RP-PCA encour-

ages the identification of factors with high Sharpe ratios that fit the cross-section of

expected returns as well as explain time-series comovements. The Appendix provides

formal discussion of the approach and describes details regarding our implementation.

We consider several sets of underlying portfolio returns as the basis for statistical

factors. The first set consists of 105 portfolios including daily returns for the Fama-

French 25 size- and book-to-market-sorted portfolios, 25 size- and momentum-sorted

portfolios, 25 size- and (long term) reversal-sorted portfolios, and 30 Fama-French

value-weighted industry-sorted portfolios (‘FF+IND’). The second set consists of the

GHZ anomaly portfolios and the 30 value-weighted industry portfolios (‘GHZ+IND’).

The final set consists of the KNS anomaly portfolios discussed previously along with

the 30 value-weighted industry portfolios (‘KNS+IND’).
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2.3. Commonality in Factor Volatility: Evidence

Figure 1 provides visual evidence of a common component in factor volatilities. The figure

shows quarterly volatility series for characteristics-based factors. Panel A presents volatility

series based on raw factor returns. Panel B shows volatility series based on market-adjusted

factor returns. Individual factor volatility series appear as labeled, colored dashed-dot lines.

Panel A of Figure 1 illustrates that the raw factor volatility series exhibit a striking degree

of co-movement. Moreover, the common variation in characteristics-based factor volatility

appears to co-move positively with market volatility, shown as a blue solid line for reference.

It is possible that the common variation in factor return volatility series and the co-

movement of this common variation with market volatility is simply due to the fact that

characteristics-based factor returns are not market neutral. For example, it is possible that

average market betas differ for stocks in the long versus short legs in these portfolios. More-

over, even if factor betas are unconditionally small, they might exhibit substantial time-

variation. Panel B addresses this concern by showing quarterly volatility series for market-

adjusted factor return series with respect to market return variation. Market-adjusted factor

return volatility series continue to exhibit a strong common component that is strongly posi-

tively correlated with market volatility and negatively correlated with economic conditions.15

To more clearly indicate the common source of variation, Panel B depicts a measure of com-

mon variation in (market-adjusted) factor volatility series, constructed as the equal-weighted

average of the factor residual volatilities. The dynamics of the common component in factor

volatility continue to be similar to those of market volatility. At the same time, there is

visual evidence that the common volatility component differs in some respects from market

volatility. For example, the behavior of the common volatility series in the late 1990s and

early 2000s differs somewhat from market volatility. Later we explore in further detail the

relation between market volatility and the common component of factor volatility.

Figure 2 provides plots of market-adjusted volatility series for two other sets of factors:

15Moreira and Muir (2017) note that characteristics-based factor volatilities co-move with market volatility
(see their Figure 1), but do not explicitly analyze whether this is simply attributable to direct market
exposure.
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Panel A shows volatility series for market-adjusted returns on 12 value-weighted Fama-French

industry portfolios. Panel B shows volatility series for market-adjusted returns on 12 ran-

domly selected anomaly long-short portfolios from the KNS anomaly set. Both panels depict

the equal-weighted average of the various industry or anomaly volatility series as a blue solid

line. The main takeaway from Figure 2 is that the alternative industry and anomaly return

sets produce qualitatively similar results to those for characteristics-based factors. In partic-

ular, the appears to be a strong common component in volatility for market-adjusted returns

for both industry and anomaly portfolios. Both industry and anomaly return volatility series

tend to peak in economic recessions and/or financial crises and are positively correlated with

market volatility. The common volatility component inherits these features, and therefore

is both countercyclical and positively correlated with market volatility. It is notable that

the dynamics of the common volatility component constructed from industry and anomaly

returns are both very similar to each other as well as very similar to the common volatility

component constructed from characteristics-based factors in Panel B of Figure 1.

Table 1 presents statistics summarizing the evidence for a strong common component in

factor volatility. Given a particular set of factor returns, we first compute market-adjusted

daily returns and corresponding realized factor volatility measures at the quarterly frequency.

We define a measure of common factor volatility (CFV) as the first principal component

extracted from the set of factor volatility series,16 The first column describes the set of

factor returns analyzed. The second column indicates the sample period over which factor

returns are observed. The third column of Table 1 (% Expl.) shows the percent of total

factor volatility variance explained by the CFV series. The next two columns display the

sample correlation between CFV and two reference series: market volatility and the ADS

measure of economic conditions. Market volatility is computed as the sum of squared daily

returns on the market factor downloaded from Ken French’s website. The final three columns

of Table 1 summarize the market exposure of the underlying factor returns. The statistic β̂

16The PC-based CFV series is typically highly correlated an alternative average volatility measure for
most factor sets. However, in some instances, such as the CRR macroeconomic factors, the level of volatility
can differ substantially across factors. For this reason ,we adopt the PCA common volatility measure.
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shows the pooled (across portfolios and years) market beta estimates from the annual market

model regressions. SE(β̂) is the average standard error for the beta estimates. Finally, β̂

equals the pooled (across portfolios and years) R2-statistic for the market model regressions.

Panel A provides results for various subsets of characteristics-based factors. The CFV

series explains a large proportion of variation in the volatility of factor returns (70–80%

depending on the factor set). CFV is strongly positively correlated with market volatility

(typical correlations are around 0.8) and consistently negative correlated with the ADS

measure, confirming a countercyclical relation. Pooled average market beta estimates are

generally close to zero. The pooled average R2-value is consistently in the 20-25% range for

the various factor portfolios. This indicates that, although the long-short factor portfolios

are market neutral on average, they do exhibit market exposure via time-variation of market

betas around zero. Finally, annual market betas are estimated reasonably precisely, with

typical standard errors of approximately 0.03–0.04.

Panel B presents results for anomaly long-short portfolios. These are also qualitatively

similar to earlier results for characteristics-based factors. There is again strong evidence of a

factor structure in residual volatility: the percentage of anomaly portfolio residual volatility

explained by the common component is approximately 82% for the more limited anomaly

set and roughly 75% for the full set of anomalies. The CFV series is strongly positively

correlated with market volatility negative correlated with economic conditions.

Panels C, D, and E present results for industry, macroeconomic, and statistical factors,

respectively. Results are qualitatively similar to those for characteristics-based factors. The

fraction of variance explained by the common volatility factor remains economically large

for each of these sets of alternative factors. The CFV series associated with these factor sets

are again positively and strongly correlated with market volatility and negatively correlated

with economic conditions. Unsurprisingly, the average level of market exposure is greater

for the long-only industry portfolios relative to long-short factors or statistical factors.

Each of the alternative CFV measures extracted from various sets of factor and anomaly

returns are highly positively correlated with market volatility. This suggests that they are
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also likely to be highly correlated with each other. Figure 3 confirms this conjecture. The

figure plots five alternative CFV measures extracted from different sets of portfolio returns.

The series are standardized to facilitate comparison and plotted over the overlapping sam-

ple period of 1965–2018. The measures are extremely similar. Pairwise correlations (not

explicitly reported) are generally in excess of 0.9. Below, we will often speak of the CFV

series. As the picture indicates, the particular choice of variation on the measure is relatively

unimportant, and results are highly robust to using other variations.

2.4. Commonality in Correlations

The discussion to this point focuses on commonality in the dynamics of volatility for

factor and anomaly portfolios. We now briefly consider the behavior of correlations for such

portfolios. The key questions we address concern whether there a strong commonality also

exists among these correlations, and what is the relation between the dynamic evolution of

correlations versus the common volatility series previously described.

Table 2 provides summary statistics regarding quarterly correlation measures for raw

and market-adjusted factor and anomaly portfolios. For each portfolio within a specified

set, we compute time series of quarterly realized correlations as the sample pairwise corre-

lations of daily returns within the corresponding quarter. As an example, if the factor set

consists of five factors, we obtain 10 quarterly time series, each reflecting the dynamics of

a particular pairwise correlation among these factors. We then compute a simple measure

of the common component of the correlations as the average of the pairwise correlations

within each quarter, denoted ρt. The table shows the percent of total variation captured by

this common component measure (‘% Expl.’), as well as the annualized time series standard

deviation of the common correlation measure, denoted σ(ρ). To shed light on whether the

dynamics of the common correlation component are similar to that of market volatility or

economic conditions, we report the time series correlations between the common correlation

measure and market volatility and between the common correlation series and the ADS in-

dex. The right-hand side of Table 2 provides similar statistics for correlations constructed
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using market-adjusted factor returns. This helps convey to what extent common correlation

arises due to common market exposure. The common correlation measures explain much

less of the total variation for most portfolio sets relative to the common volatility series

described in Table 1. For raw factor correlations, the percent explained is between 10–30%

with the exception of the long-only industry portfolios which are subject to common market

exposure. Upon examining correlations constructed from market-adjusted returns (right-

hand side of Table 2), the fraction of variation explained by the first principal component

of the correlation series is always under 30%. Correlations with both market volatility and

economic conditions are mixed in sign and generally economically weak. Figure 4 illustrates

correlation dynamics for the factors SMB, HML, RMW, CMA, and UMD. These five factors

give rise to a set of 10 pairwise correlations. Panel A of Figure 4 plots quarterly realized

correlations for raw factor returns. To facilitate interpretation, the plot shows correlations

as differences from their full time series average value. The 10 correlation pairs are plotted

as dashed-dot lines without labeling to avoid clutter. The thick solid line depicts the average

of the 10 correlation pairs. The correlation pairs exhibit significant variation over horizons

of several years. However, there does not seem to be a strong degree of coherence with re-

spect to this variation, as the average correlation is considerably less volatile. Furthermore,

common correlation does not appear to closely relate to stock market volatility or the CFV

series. Panel B illustrates that the correlations of ‘market-adjusted’ characteristics-based

factor returns exhibit similar properties. The common component fluctuates relatively little,

save a notable increase in the early 2000s. The bottom line from this analysis is that, while

factor return correlations exhibit time series variation, there does not appear to be a domi-

nant common factor, and the common component of variation does not consistently closely

relate to market volatility, CFV, or economic conditions.
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3. Common Volatility: Extensions and Robustness

This section extends results concerning common volatility in several directions. First, we

address critiques related to potential spurious sources for apparent common factor volatility

and present results for associated robustness checks. Second we consider the relation between

the common factor volatility of central interest in this paper and previously documented

common variation in firm-specific return components.

3.1. Spurious Common Factor Volatility?

A first potential concern is that measurement error with respect to market beta estimates

might induce an apparent common volatility component. To appreciate the issue, assume

momentarily that the true beta for a particular factor equals one and that an econometrician

follows our procedure to obtain a measure of market-adjusted volatility. Suppose that she

obtains a beta estimate of zero, rather than one, and computes market-adjusted returns

and associated volatility measures using this incorrect beta estimate. Mechanically, the

(estimated) residuals used to construct volatility measures contain a component equal to

daily market returns. If similarly egregious estimation errors occur across multiple portfolios,

it will appear as though there exists a common volatility component that is highly correlated

with market volatility, even if no such common component exists. The Appendix provides

additional analysis regarding the implications of beta estimation error. We consider a setting

in which daily asset or portfolio returns follow a standard single factor (market) model with

potentially time-varying market betas and i.i.d. idiosyncratic returns. A spurious common

variance component mechanically related to market variance occurs when either betas are

constant within period but the periodic beta is estimated with error, or the periodic beta is

estimated accurately, but there is daily variation around this average within the period.

We present several robustness checks indicating that beta measurement error is unlikely

to explain the common factor volatility we observe. Panel A of Table 3 shows summary

statistics for CFV series extracted from factor and anomaly returns when the market model

21



regression used to obtain residuals is estimated monthly, as opposed to annually as in Table

1. Monthly betas better adapt to potential within-year variation in betas, which constitute

one potential source of spurious common volatility. To conserve space, we report results

only for selected sets of portfolios. The results for these portfolios are extremely similar

to those for the corresponding portfolio sets in Table 1 based on annual regressions. As a

second robustness check, we analyze several sets of portfolios where there exists strong prior

knowledge concerning true market betas. These include characteristics-based factors, long-

short anomaly returns, and statistical factors extracted from returns. In the first two cases,

the long-short nature of the portfolio is likely to produce returns with relatively low market

exposure. For the statistical factor return set, the first factor is likely to be highly correlated

with the market factor (in the data, the correlation is over 0.9). We therefore jettison this

factor and examine the next ten factors, which should be close to uncorrelated with market

returns. Panel B in Table 1 shows results for these factor sets based on raw returns, i.e.,

imposing that β̂ = 0, in contrast to the results for market-adjusted returns reported in Table

1. The results are extremely similar. Figures presented in the Supplementary Appendix show

that the common volatility series for these portfolios are nearly identical to those based on

market-adjusted returns. This would be unlikely to occur if beta estimation error was the

sole source of apparent common volatility.17

A second potential concern is that commonality in time-varying microstructure noise

might masquerade as common factor volatility. The ‘realized variance’ proxies we compute

for factor volatility are based on daily returns for portfolios that potentially include relatively

17As an additional test, we form long-short portfolios consisting of randomly selected firms from the same
universe of stocks that comprise the basis for our anomaly portfolios. At the end of each calendar year, we
generate a set of 10 randomly generated artificial ‘characteristics’ for each eligible stock in the sample at
that time. We then form random long-short portfolios by sorting stocks into terciles based on each of these
randomly generated characteristic values and forming associated long-short portfolio based on the extreme
terciles. We compute value-weighted daily returns for these portfolios over the ensuing calendar year, and
repeat this process for each calendar year. Given the construction of these portfolios, the market beta of the
long-short portfolios should be close to zero at all times. If market beta estimation error is the driving force
behind the common volatility component, we should observe a strong common component when estimating
betas for these portfolios, but not when we impose the virtually correct restriction that β = 0. Instead, we
find a very similar common component under both approaches.
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illiquid stocks. We consider two associated robustness checks. First, we construct alternative

daily factor returns for the Fama-French five factors based on the mid-point between the

daily bid and ask closing prices recorded by CRSP. These returns cover the period 1993–

2018. Results in Panel C for the four non-market factors constructed from the bid and ask

prices are very similar to results constructed from CRSP closing prices.

Monthly returns should be much less affected by microstructure noise relative to daily

returns. Consequently, we construct alternative set factor volatility series based on squared

monthly returns, rather than daily returns. Monthly factor returns are adjusted for market

exposure by running market model regressions using a rolling window of 60 months (five

years) of data. We then construct factor volatility series as the sum of the past 12 squared

monthly residuals and extract a common factor volatility series using the same approach

as in our main analysis. Table 3 shows results. Results are qualitatively similar to those

reported in Table 1, indicating that microstructure noise is unlikely to be the source of the

common factor volatility we document.

We conducted yet further robustness checks concerning the presence of a strong com-

mon component among factor volatility series. Common volatility measures extracted from

monthly realized volatility series (rather than quarterly) exhibit similar properties to those

reported in Table 1. We also consider alternative ways to construct statistical factors, such

as using the traditional PCA approach instead of RP-PCA, or examining a longer time series

of statistical factor returns available since 1927. All variations produce similar results.

3.2. Common Factor Volatility versus Common Idiosyncratic Volatility

Several previous studies conclude that there is common variation in the volatility of

idiosyncratic returns. Apparent common factor volatility might arise as an artifact of pre-

viously documented commonality in idiosyncratic volatility. In particular, value-weighted

factor portfolios can contain ‘granular measurement errors’ driven by failure of the law of
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large numbers associated with the fat-tailed nature of the size distribution of public firms.18

To address this potential concern, Panel D of Table 3 shows results for equal-weighted, as

opposed to value-weighted, industry returns. These portfolios should be relatively insulated

from granular measurement errors and virtually free of truly idiosyncratic return compo-

nents. We continue to find strong evidence of common factor volatility.

We also consider the reverse possibility: does apparent common idiosyncratic volatility

arise solely due to exposure to so-called ‘weak factors’ in market-adjusted (or Fama-French

factor-adjusted) return residuals that are treated as idiosyncratic in some previous studies?

To investigate this question, we identify common idiosyncratic volatility via an alternative

approach: we test for commonality in volatility in idiosyncratic portions of the spectrum

of return variation produced by a statistical factor decomposition. In particular, instead of

analyzing the leading factors extracted by RP-PCA, we instead analyze alternative sets of

statistically extracted factors that explain increasingly less variation in returns. We continue

to strong evidence of a common volatility component across these alternative factor sets.

Moreover, the common component extracted from the idiosyncratic spectrum of the factor

decomposition is very similar to that extracted from the leading ‘strong’ and ‘semi-strong’

factors reported in earlier results. Figure 5 plots the standardized common volatility series

extracted from four alliterative sets of statistical factor constructed from an underlying set of

87 GHZ anomaly and industry portfolio returns. Similar results obtain for statistical factors

constructed using alternative underlying stocks or portfolios. We draw two conclusions from

this analysis: 1) there does indeed appear to be commonality in idiosyncratic volatility; and

2) the common component in factor volatility and idiosyncratic volatility are very highly

correlated. The latter point is important, as it implies that, effectively, a single common

volatility feature pervades the entire spectrum of equity returns.

Figure 6 provides additional visual evidence concerning the relations among CFV, market

volatility, and CIV.19 Panel A of Figure 6 plots annual time series for each volatility measure.

18Byun and Schmidt (2018) find that asset pricing tests are sensitive to the presence of such granular
measurement errors.

19We construct the common idiosyncratic volatility (CIV) measure of Herskovic et al. (2016) as the equal-
weighted average across stocks of monthly idiosyncratic variances. These variances are computed as the sum
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To facilitate comparison among series, we plot the standardized value of the natural loga-

rithm of each volatility series. There is strong affinity among CFV, market volatility, and

CIV, consistent with the high correlations reported in Table 9. While both (standardized)

CIV and MVOL occasionally deviate from CFV, these deviations are relatively short-lived.

In other words, CFV appears to serve as a ‘gravitational attraction point’ for market volatil-

ity and CIV. Panel B plots the time series of deviations of market volatiity and CIV from

CFV. This plot illustrates that both market volatility and CIV tend to ‘wander’ away from

CFV, but these deviations do not appear to be transitory rather than permanent. To the

extent that both series exhibit a long-run equilibrium relation with CFV, the speed of ad-

justment seems relatively slow, in the sense that deviations can persist for a number of years.

One concrete example involves the behavior of market volatility relatively to CFV over the

past several decades. Standardized market volatility is persistently above CFV during the

financial crisis and its immediately aftermath, but more recently fell significantly below

CFV.20 The informal evidence in Figure 6 suggests that CFV can be interpreted as a type

of “fundamental volatility” quantity, such that other equity volatility series, including factor

volatilities and idiosyncratic volatility series, share a long-run relation with this fundamental

series. Below we explore this theme further.

4. Implications of Common Factor Volatility

This section investigates the properties of common factor volatility. We first characterize

the time series persistence of CFV and the extent to which CFV co-moves with a variety

of daily squared residuals from regression on the Fama-French three factor model. We make one substantive
alteration to the Herskovic et al. (2016) measure: we exclude very small stocks, defined as those firms
with market capitalization below the 20th percentile of NYSE-listed market capitalization at the end of
the previous calendar year. We do this in order to increase the degree of comparability across time for
the (unbalanced) panel of stocks that form the basis for the CIV time series measure. The Supplementary
Appendix provides an explicit comparison of the alternative versions of the series. The differences are most
pronounced during the 1990s, which coincides with the ‘dot-com’ era and an associated period of high IPO
rate among relatively young, unprofitable firms.

20The Supplementary Appendix plots the relation between long-run components of the three volatility
series extracted via a simple filtering procedure. This plot indicates that deviations of the (standardized)
long-run components of market volatility and CIV from that of CFV also have a tendency to reverse.
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of other volatility, uncertainty, and risk measures from the literature. We then examine the

predictive power of CFV for other volatility series in the context of error correction models.

Finally, we briefly explore the relation between CFV and the equity premium. It is necessary

to settle on a particular measure of common factor volatility. Results that follow use as CFV

the equal-weighted average of market-adjusted volatilities for 10 Fama-French equal-weighted

portfolios. Because CFV series extracted from different factor sets are highly correlated, the

specific choice has little effect on the main results that follow. The Supplementary Appendix

provides explicits evidence concerning robustness to alternative choices.

4.1. Common Factor Volatility as a Predictor of Future Volatility

In Tables 5 and 6 we examine the relationship between monthly CFV and volatilities

of the five Fama and French (2015) factors as well as UMD of Carhart (1997). If a long-

run equilibrium relation exists between CFV and volatilities of traded assets, we expect

deviations of such traded factors’ volatilities from their equilibrium (with respect to CFV)

to have predictive power for future volatility. We first estimate the following OLS model for

alternative factor volatility series:

log(σFk,t) = a+ β · log(CFVt) + et, (8)

where σFk,t denotes the volatility series for factor k and CFVt is common factor volatility.

The parameter β measures the loading strength of factor k volatility on the common volatil-

ity component, and the regression R2-value reflects the proportion of variation in factor k

volatility attributable to this common component. Panel A of Table 5 reports detailed re-

sults for the six factors (including the market factor). There is a strong linear relationship

between the natural logarithms of factor volatility and CFV for all six factors. Estimates of

the parameter β capturing the loading on the common component range from 0.54 to 0.78.

The regression R2-values range from 0.29 for market volatility to 0.61 for RMW volatility.

This indicates that the common volatility component explains a significant share of time
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series variation in the factor volatility series and is consistent with earlier results regarding

the economic significance of common factor volatility. The residuals from the regression

model of Eq. (8) can be interpreted as transitory factor volatility deviations from a long-run

equilibrium relation with CFV. In Panel B and C we report correlations of log volatilities

and correlations of residuals from Equation 8. The pairwise correlations of the six factors

in Panel B all exceed 0.60. Once we project off CFV, the pairwise residual correlations are

all positive but relatively low in magnitude. Only the correlation between Mrktrf and SMB

remains high. Most other pairwise correlations are reduced by approximately fifty percent or

more. This reiterates the notion that a large part of commonality in these portfolios’ volatil-

ity is a associated with a common factor volatility. The small magnitude of the correlations

in Panel C also indicates that, at the monthly frequency, deviations from a linear func-

tional relationship between CFV and each of the six factors are positively, but not strongly

correlated.

Figure 7 summarizes results for regressions similar to those reported in Table 5 for a

variety of alternative sets of factor and anomaly portfolios described in Tables 1, 2 and 4, all

of whose daily returns have been orthogonalized with respect to market returns. The figure

shows histograms summarizing empirical estimates of loadings parameters for these factor

volatility series on CFV (β in Eq. (8)) and R2-values for the loadings regressions. The

histograms of loadings estimates in Panel A illustrate that virtually all factor and anomaly

volatility series we consider load positively on CFV. The histograms in Panel B show that the

vast majority of R2-values for the loadings regressions cluster in the range of 0.4–0.6. Jointly,

these results indicate that a wide range of diversified equity portfolios exhibit time-varying

volatility that correlates significantly with CFV.

Table 6 examines the power of CFV for predicting future volatilities of the six factors.

The presence of a long-run relation among factor volatility series suggests that deviations

from long-run relations should predict future volatility trajectories via an error correction

mechanism. For example, a large positive current residual implies that current factor volatil-

ity is substantially above its equilibrium with respect to CFV. We consequently expect lower
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volatility of that factor as the long-run equilibrium relation is restored. With this motiva-

tion in mind, we test whether a factor volatility’s current deviation from its long-run relation

with CFV (i.e., the residuals from the estimated linear function given in Equation 8) contains

predictive power for future volatility, conditional on past factor volatility.

Each panel of Table 6 presents results for a single factor. We examine predictive regres-

sions of the form

log(σFk,t+1) = a+ b′Xt + γ′Z + et+1, (9)

where X denotes a d-dimension vector of predictors where d ∈ {1, 2} with elements of X

coming from the set of random variables {log(σFk
), log(CFV ), resid}. The vector Z includes

additional lags of factor volatilities σFk
, from the previous 3 months and the previous 12

months. We control for these past lagged volatilities at differing horizons following the HAR

model which Corsi (2009) shows is able to capture the long memory of equity volatility series.

Specification (4) includes these additional lags, for all other specifications γ = 0. In Panel A,

we see that CFV has substantial predictive power for future volatility of the market factor.

Market factor volatility and CFV have R2’s of 0.44 and 0.26 respectively for predicting future

market volatility at the 1 month horizon.

In specifications (3) and (4), we examine the predictive power of factor volatility residuals

reflecting deviations from long-run relations with CFV. In all cases, we include lagged factor

volatility as well as the lagged residual. The residual is highly significant with t-statistics

exceeding 3 in magnitude. As conjectured, the slope coefficient estimate corresponding to the

deviation from long-run equilibrium is negative, indicating that deviations from equilibrium

tend to be reversed in future months. It is also notable that when we compare specification

(1) with (3), we see that there is an economically significant increase in R2 to be gained by

including the residual as well as past factor volatility in Equation 9. In specification (4) we

include additional lags of length 3 and 12 months of factor volatility. Although this slightly

reduces the coefficient estimates, the slope estimate on the CFV residual term residt remains

negative and highly significant.

Panels B, C, D, E and F examine the remaining factors. In all cases, the results are very

28



consistent. CFV is a strong predictor of each factor’s subsequent volatility and residuals are

strongly negatively related to subsequent factor volatility.21 In unreported results (available

upon request), we further show that the inclusion of lagged CFV in predictive regressions for

each of the factors significantly improves out of sample forecasts of future volatility relative

to the benchmark models used in Table 6. Figure 8 summarizes results for similar volatility

forecasting regressions using a wide range of factors and anomaly portfolios beyond the the

six factors analyzed in Table 6. The portfolios used in Figure 8, have all been orthogonalized

with respect to the market factor in order to rule out the possibility that predictability is

driven by portfolio returns loading on market returns. The vast majority of slope coefficient

estimates on the deviation from long-run equilibrium with CFV are negative and significant

in these forecasting regressions. This illustrates that the incremental forecasting power of

deviations with respect to CFV is not specific to the Fama and French (2015) or Carhart

factors and instead prevails across most factors and anomaly portfolios we analyze. Broadly,

the results of Table 6 and Figure 8 support the notion that CFV functions as a single

volatility factor that strongly influences the dynamics of market volatility as well as the

volatility dynamics of traded factors commonly used in the asset pricing literature.

4.2. Common Factor Volatility and the Equity Premium

Numerous studies investigate the predictive power of volatility for excess stock market re-

turns and whether volatility is a priced risk in the cross-section of equity returns. Traditional

predictive regressions of excess stock returns on ’realized’ measures of stock market volatility

often produce inconclusive results. Table 8 contrasts the stock return forecasting power of

common factor volatility (CFV) with that of traditional stock market volatility. The table

reports results for the following bi-variate predictive regression at cumulative return horizons

of one to 12 years:

Rt+1,t+H = α + βdpt + γVOLt + εt+H , (10)

21In unreported results, we also control for a large number of predictors that have been shown to predict
market returns and market volatility. None of the factors included in Goyal and Welch (2007) have a
substantial impact on the predictive power of lagged residuals on subsequent factor volatility.
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where Rt+1,t+H denotes the cumulative excess return on the CRSP value-weighted portfolio

and the predictor variable dpt is the log dividend-price ratio and the variable VOL denotes

either the CFV series (results in Panel A), or stock market volatility MVOL (results in

panel B). All regressions employ overlapping data over the period 1927–2017 (utilizing as

many returns as possible given the horizon H). Reported t-statistics are based on Newey-

West standard errors with a number of lags equal to 2 × H − 1. The results in Panel A

demonstrate evidence of a positive risk-return trade-off when the measure of risk is common

factor volatility. CFV positively and significantly forecasts excess returns at virtually all

horizons considered (the t-statistic for H = 2 is borderline). This is notable because stock

return volatility measures often are insignificant in return-forecasting regressions at short

horizons. This is confirmed in Panel B, where the stock return volatility measure MVOL is

borderline significant at 1 and 2 year horizons, insignificant at horizons of 3–10 years, and

highly only significant at very long horizons. The forecasting power of market volatility at

very long horizons is consistent with Bandi, Bretscher, and Tamoni (2018), who find evidence

for even stronger long-run forecasting power for a ‘backward aggregated’ volatility measure

that captures a low-frequency component of volatility. The R2-values in Panel A associated

with CFV exceed those at the corresponding horizon for market volatility at all horizons

considered, with improvements on the order of 3–7%.

The literature concerning stock return predictability is expansive. There are a large

number of competing predictors. In addition, evidence of stock return forecasting power can

differ in ‘out-of-sample’ versus in-sample or full sample designs (Goyal and Welch (2007)),

and stock return forecasting regressions can be subject to structural breaks, such that pre-

dictive power varies over time (e.g., Paye and Timmermann (2006), Farmer, Schmidt, and

Timmermann (2018)). The claim we make in this context is therefore relatively narrow: we

document that there appears to be stronger evidence for a positive risk-return relation in

the equity market when common factor volatility is used as the measure of risk, rather than

a traditional measure of realized stock market volatility.
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5. Sources of Common Volatility

This section seeks to shed light on the underlying causes of common factor volatility. An

obvious candidate explanation is that common variation in fundamental uncertainty drives

associated commonality in stock return volatility. We consider two sources of fundamental

uncertainty: macroeconomic uncertainty and uncertainty in earnings surprises. Another

candidate explanation is that the sensitivity of stock returns to news is time-varying. Hence,

we also consider potential sources of time-varying sensitivity including changes in operating

and financial leverage and growth options.

5.1. Relations with other Uncertainty Measures

Table 9 reports statistics capturing the persistence of series and measures of co-movement

between CFV and various comparison series. Panel A compares CFV with market volatility

and common idiosyncratic volatility (CIV), where the latter is computed following Her-

skovic et al. (2016) as the cross-sectional average or monthly idiosyncratic volatility using

daily residuals from a Fama-French three factor model to measure idiosyncratic returns.

Panel B reports statistics for two measures of financial uncertainty, including the financial

uncertainty (FINU) measure of Ludvigson et al (2018), a financial stress indicator proposed

by Puttmann (2018), and the VIX and NVIX option-implied volatility measures (the latter is

due to Moreira and Muir (2017)). Panel C includes several prominent measures of economic

uncertainty from recent literature. These include macroeconomic uncertainty (MACU) and

real economic uncertainty (REALU) measures due to Jurado et al. (2015) and Ludvigson

et al (2018) and the economic policy uncertainty measure of Baker et al. (2016). Panel D

provides results for a set of other financial variables often linked with notions of risk or fear.

These include the tail risk measure of Kelly and Jiang (2014), denoted KJ, the default spread

(DEF) and the term spread (TERM).

For each monthly series, Table 9 shows four statistics capturing the degree of persistence.

These include the sample auto-correlations at lags one and six (φ̂1 and φ̂6), the quantity
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φ̂6
1, defined as the lag six autocorrelation for an AR(1) process with φ equal to the sample

estimate, and d̂, which is an estimate of the degree of fractional integration for the series.

The right-hand portion of Table 9 presents statistics capturing the degree of co-movement

of CFV with each series. These include the sample (contemporaneous) correlation between

CFV and the series in levels, the sample correlation in first differences, and finally an estimate

of the ‘long-run’ correlation between the series based on the estimation approach of Müller

and Watson (2018) along with a corresponding 90% confidence set.

Previous literature documents that stock market volatility is persistent and exhibits long

memory. Estimates in Table 9 confirm these characteristics and indicate that CFV, as well

as CIV, are also persistent, long-memory time series. In fact, both CFV and CIV appear to

be more persistent than (realized) market volatility. Most of the other comparison financial

time series are also highly persistent series, with VRP being the least persistent among those

we consider. The CFV series is highly correlated with market volatility and CIV in both

levels and first differences, and the long-run correlation estimate is positive and economically,

as well as statistically, significant.

CFV positive correlates with each of the financial uncertainty measures in Panel B.

Among these, CFV is most highly correlated with the VIX series in levels. Changes in CFV

are relatively highly correlated with changes in both the FINU measure of Jurado et al.

(2015) and the VIX series. Point estimates of long-run correlations with the alternative

financial uncertainty measure are positive. Although the long-run correlations are rather

imprecisely estimated, and therefore often insignificant, the long-run correlation between

CFV and NVIX is statistically significant. The relation between CFV and the macroeco-

nomic uncertainty measures MACU, REALU, and EPU (Panel C) are weaker relative to

the correlations with financial uncertainty measures. MACU also contains stock and bond

market indices, so it isn’t a pure measure of real economic uncertainty. REALU, that ex-

cludes all financial variables from MACU has a much lower correlation with CFV. Among

the economic uncertainty measures, CFV shares the most affinity with the EPU measure

of Baker et al. (2016). Among the additional financial variables reported in Panel D, CFV
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relates most closely to the default spread. However, the correlation between changes in CFV

and the default spread is much lower than similar correlations for volatility and financial

uncertainty measures reported in Panels A and B.

5.2. Macroeconomic tracking portfolios and underlying volatility

As an additional analysis, we compare the evidence for common volatility in the CRR

macroeconomic factors with evidence for common volatility in the underlying macroeconomic

series that give rise to these factors. (This is not possible using daily data because the

macroeconomic series are unavailable at the daily frequency.) Both the traded return-based

CRR factor set and the underlying CRR macroeconomic volatility series exhibit evidence of

commonality in volatility. However, Figure 9 shows that the common component in the factor

volatility has low correlations with the common component in the volatility of underlying

macroeconomic series. In fact, the figure shows that the common component in CRR factor

volatility moves much more closely with the common component in industry return volatility

than with common component in the volatility of the underlying macroeconomic series. In

untabulated results we find that the R2s of a regression of common CRR factor volatility on

the underlying common volatility is only 12.2%, while it is 50.7% when regressed on common

industry volatility.

5.3. Earnings surprises

A potential concern with the tests using macroeconomic aggregates is timing. Financial

markets may react today to news about macroeconomic aggregates far into the future. In

other words, it is difficult to determine what macroeconomic information is a surprise at

any point in time and what has already been factored into prices. To address this concern,

we turn to earnings surprises. It is relatively easier to measure surprises in earnings and to

isolate return reactions that are related to the surprise in earnings by focusing on a short

period around a firm’s earnings announcement. Our measure of the volatility of fundamental

news is the volatility of earnings surprises (forecast errors relative to analyst expectations
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or a seasonal random walk earnings model). The volatility of the market reaction to news is

the volatility of returns in the three day window centered on the earnings date.

First, we test whether there is commonality in the volatility of earnings surprises and

earnings announcement returns across groups of stocks. In particular, we measure the stan-

dard deviation of earnings surprises every quarter within each Fama-French 12 industry. We

estimate two sets of earnings surprises: SUEIBES, in which surprises are relative to the

median analyst forecast of earnings per share, and SUESRW , in which surprises are relative

to a seasonal random walk model for earnings. Both measures are standardized by price

and computed as in Livnat and Mendenhall (2006). SUEIBES is available from 1985, while

SUESRW is available from 1975. We also perform a similar computation for the standard

deviation of cumulative abnormal returns (stock return minus market return) in the three

day window around the earnings announcement date.

We find that there is a large degree of commonality in the (log) volatility of earnings

surprises across industries. The first principal component explains about 80% of the variance

of both earnings surprise volatility series. There is also commonality in the variance of

earnings announcement returns, albeit somewhat smaller in magnitude. The first principal

component explains about 70% of the variance of this series.

The next question is whether the commonality in variance of these series is correlated

with CFV. Table 10 reports regression of CFV on the first principal component of three

earnings surprise volatility series. The first 4 specifications are in levels, while the next 4 are

in innovations of all left and right hand side variables. Surprisingly, the level of volatility of

analyst surprises is uncorrelated with contemporaneous CFV. The volatility of surprises from

a simple random walk model is correlated with CFV with anR2 of just under 30%. In contrast

the volatility of announcement returns is highly correlated with CFV with an R2 of 72%. To

assuage concerns about regressions with persistent variables, we also report regressions of

innovations of these series. Innovations of all series are measured using an ARMA(1,1) filter.

In the innovations regressions, the correlations of both the earnings surprise volatility series

with CFV are small—R2 are 2%. The volatility of announcement return series continues to be
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highly correlated with CFV with an R2 of 61%. The correlation of earnings announcement

return volatility with CFV may be a manifestation of the correlation of CIV with CFV

because both are volatilities of idiosyncratic returns and hence, is perhaps not that surprising.

What is noteworthy from these results is that although there appears to be a common

component in the volatility of fundamental cash flow news, this component does not seem

to be correlated with CFV (especially in the innovations regressions).

5.4. Explanations for time-varying sensitivity to news

The preceding results suggest that the commonality in volatility we document is largely

related to financial markets rather than fundamental uncertainty. One possible source of

common volatility arising in financial markets is that there is time-variation in the sensitivity

of stock prices to fundamental news. The literature on financial and real options finds that

options magnify the volatility of the underlying asset. For example, Galai and Masulis (1976)

show that the optionality created by financial leverage amplifies the volatility of a firm’s

assets. Growth options and operating leverage also work in a similar manner. Thus, any

common variation in real or financial options across firms could give rise to the commonality

in systematic and idiosyncratic volatility we observe.

We therefore test whether CFV is correlated with the following measures of financial

and operating leverage as well as growth options. Book financial leverage is short term

debt plus long-term debt divided by total assets. Book operating leverage is operating

profits divided by total assets as in Novy-Marx (2010). We also consider market versions

of these measures, in which the denominator is market equity plus book total liabilities.

Our final measure is the market-to-book ratio as a proxy for growth options. We take the

average of each of these variables every quarter. Accounting variables are lined up market

variables as on the fiscal quarter end-date. Panel B of Table 10 presents regressions of

innovations in CFV on innovations in each of these variables. As before innovations are from

an ARMA (1,1) model. We find that innovations in book operating and financial leverage

have small correlations with innovations in CFV, with R2s of 2%. The next two specifications
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examine market leverage and contemporaneous average stock returns. Returns are included

to because innovations in market leverage are positively correlated with returns, and returns

are negatively correlated with volatility. (Not including returns results in a negative sign for

the leverage measures). These specifications show that the incremental explanatory power of

market leverage measures is small. Finally we also see that the market-to-book ratio is not

significantly related to CFV. Overall, these measures of real and financial options have small

correlations with CFV suggesting that explanations that rely on optionality are unlikely to

explain our findings.

6. Conclusion

We find that there is substantial common variation in the volatilities of a large set of fac-

tor, industry, and other long-short portfolios. This common factor volatility is also correlated

with market and average idiosyncratic volatility. We show that this finding is unlikely to

be spurious: explanations that rely on common exposures to the market, bid-ask bounce, or

undiversified idiosyncratic risk are not supported by our tests. CFV is more persistent than

market volatility and helps predicts the volatility of other factors even after controlling for

additional lags of that factor’s volatility. This appears to be due to a long-run equilibrium

relationship that is similar to cointegration. Deviations of factor volatility from the level

predicted by CFV tend to reverse in the future.

Although CFV is correlated with measures of economic uncertainty, its correlations with

measures of uncertainty from financial markets are much higher. Similarly the correlation

of CFV with the volatility of earnings surprises is low, but its correlation with the volatility

of announcement returns is high. These results suggest that time-variation in the sensitivity

to new information in financial markets, rather than the amount of new information plays

a role in the time-variation in CFV. However, rational explanations for changing sensitivity

to news such as increases in financial or operating leverage are not supported by our tests.

These results have the flavor of the findings of “excess volatility” in Shiller (1981) and
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LeRoy and Porter (1981). These papers find that the volatility in market returns is too high

to be justified by the volatility in future dividends. Our result is that there is substantial

commonality in volatility across factors and individual stocks that does not seem to be

due to commonality in the fundamental information or other rational explanations for time-

variation in sensitivity to information that we consider. An alternate explanation for Shiller’s

results is time-variation in discount rates (see for example Schwert, 1991). Our results pose

a challenge for this explanation, because it seems unlikely that time-variation in discount

rates results in commonality between factor and idiosyncratic volatilities.
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Appendix A. Beta Estimation Error

To illustrate the concern, consider a set of portfolio (or individual security) returns with
potentially time-varying market exposure. Let t index lower frequency periods (e.g. months
or quarters) and d index trading days, with the notation d ∈ t representing shorthand for
the set of trading days within the t-th period. Suppose daily returns for N portfolios (or
securities) evolve according to a version of the CAPM with time-varying betas, as follows:

ri,d = βi,d rm,d + εi,d, (11)

where ri,d and rm,d denote daily returns in excess of the risk-free rate for the i-th portfolio
and the market, respectively. We assume the daily return shocks εi,d are uncorrelated cross-
sectionally and over time, with time-invariant volatility σεi . Portfolio market betas βi,d are
potentially time-varying. By construction, there is no time-varying common component in
residual volatility across portfolios in this stylized setting.

Now, suppose that an econometrician seeks to measure the common factor variance,
which we define as CFV 2

t = (1/N)
∑N

i=1

∑
d∈t ε

2
i,d, based on the sum of squared residual

estimates from the market model.22 Specifically, the econometrician constructs a proxy as

ĈFV
2

t = (1/N)
N∑
i=1

∑
d∈t

ε̂2i,d = (1/N)
N∑
i=1

∑
d∈t

(
εi,d + (βi,d − β̂i,d)rm,d

)2
, (12)

where β̂i,t denotes an estimate of the true security beta for the corresponding trading day.
It then follows that

ĈFV
2

t ≈ CFV 2
t +

∑
d∈t

r2m,d (β̂i,d − βi,d)2, (13)

where the overline is short-hand for the cross-sectional average, i.e., Xi ≡ (1/N)
∑N

i=1Xi.
Equation (13) shows that the common residual variance computed based on the residu-
als from a market model regression mechanically contains a component related to market
variance when daily betas are estimated with error.

ĈFV
2

t ≈ CFV 2
t +RV 2

m,t (β̂i,t − βi,t)2 +WRV 2
m,t, (14)

where CFV 2
t denotes the true average of the within-period sum of squared daily residuals

across assets, RV 2
m,t denotes the ‘realized variance’ for the market (sum of within-period

squared market excess returns), β̂i,t is the estimated beta used to adjust within-period daily

22It is convenient to discuss the implications of beta measurement error in terms of variances rather than
volatilities. We adopt the notation CFV 2 for common factor variance to distinguish it from common factor
volatility CFV that is emphasized in our empirical work.
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returns, βi,t denotes the average daily beta value within period t, and the overline symbol
indicates the average across assets. The final term WRV 2

m,t denotes a weighted version of

the realized market variance with daily weights equal to (βi,d − βi,t)2.
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Table 1: Volatility Commonality for Factor and Anomaly Portfolios

The table shows statistics associated with quarterly volatility measures constructed from market-
adjusted factor returns. Daily portfolio returns are regressed on daily realization of the market
excess return factor to produce market-adjusted returns. Separate regressions are performed each
calendar year. Quarterly volatility series for each factor are computed by summing squared daily
residuals within each quarter. The common component of volatility is defined as the first principal
component of the set of market-adjusted volatility series. The first column specifies the set of
factors. The second column indicates the sample period. N equals the number of factors in the
corresponding set. % Expl. shows the percent of total variance explained by CFV. ρ̂MKT denotes
the time-series sample correlation between FV and market volatility. ρ̂ADS denotes the sample
correlation of FV with the business conditions measure of (Aruoba, Diebold, and Scotti (2009)).

R2 denotes the pooled mean of the R2−values for daily market model regressions. β̂ denotes the
pooled mean of market beta estimates used to obtain residual returns across portfolios and years.

Similarly, SE(β̂) denotes the pooled mean of the heteroskedasticity-robust standard error of the
market beta estimates.

Portfolios Sample N % Expl. ρ̂MKT ρ̂ADS β̂ SE(β̂) R2

Panel A: Characteristics-Based Factors

SMB, HML, UMD, BAB 1945 4 81.99 0.84 -0.46 -0.08 0.04 25.16
FF 5 + UMD 1963 5 76.71 0.79 -0.43 -0.06 0.03 20.34
FF5 + UMD, MGMT, PRF 1963 7 77.30 0.81 -0.47 -0.08 0.04 21.34
Previous Row + BAB, QMJ 1963 9 78.61 0.83 -0.48 -0.11 0.03 22.09

Panel B: Anomaly Long-Short Portfolios

GHZ Anomalies 1964 62 71.31 0.75 -0.38 0.10 0.05 17.59
KNS Anomalies 1963 41 81.32 0.68 -0.36 0.06 0.07 20.59

Panel C: Industry Portfolios

12 VW Industries 1926 12 70.92 0.79 -0.37 0.96 0.04 71.30
30 VW Industries 1926 30 63.66 0.84 -0.39 0.96 0.06 58.60

Panel D: Macroeconomic Factors

CRR Factors 1963 7 84.81 0.69 -0.33 0.17 0.10 5.33
CRR Small 1963 5 87.46 0.63 -0.34 0.10 0.07 5.66

Panel E: Statistical Factors

Statistical Factors: FF+IND 1963 10 76.43 0.80 -0.45 0.09 0.09 20.45
Statistical Factors: GHZ+IND 1964 10 76.84 0.78 -0.43 0.05 0.09 20.31
Statistical Factors: KNS+IND 1963 10 76.33 0.76 -0.42 0.14 0.08 22.17
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Table 2: Commonality in Correlations

The table shows statistics associated with quarterly correlation measures for factor and anomaly
portfolios. The first column specifies the set of factors. The second column indicates the sample
period. N equals the number of factors in the corresponding set. The column ( % Expl.)
shows the percent of total variance explained by the first principal component extracted from
the quarterly correlation series for the set of portfolios. ρ̂MKT denotes the time-series sample
correlation between the average correlation and market volatility, where the latter is computed as
squared daily within-period market factor returns. ρ̂ADS denotes the time-series sample correlation
between the average correlation and the ADS measure of economic conditions. Results are shown
both for raw correlations (left portion of the table) and for correlations computed using daily
residuals from a market model regressions estimated each calendar year (right portion of the table).

Correl. Factor (Raw) Correl. Factor (Residuals)

Portfolios Sample N % Expl. ρ̂MKT ρ̂ADS % Expl. ρ̂MKT ρ̂ADS

Panel A: Characteristics-Based Factors

SMB, HML, UMD, BAB 1945 4 25.56 0.15 -0.15 26.24 0.15 -0.32
FF 5 + UMD 1963 5 30.62 -0.07 -0.15 26.96 0.17 0.02
FF5 + UMD, MGMT, PRF 1963 7 28.32 0.14 -0.27 23.63 0.11 -0.09
Previous Row + BAB, QMJ 1963 9 23.85 0.31 -0.33 18.54 0.30 -0.22

Panel B: Anomaly Long-Short Portfolios

GHZ Anomalies 1964 62 10.19 -0.17 0.30 11.40 0.28 -0.14
KNS Anomalies 1963 41 17.82 -0.17 0.22 15.23 -0.15 0.05

Panel C: Industry Portfolios

12 VW Industries 1926 12 59.23 0.49 -0.17 15.72 0.13 -0.18
30 VW Industries 1926 30 49.15 0.43 -0.21 12.24 0.10 -0.24

Panel D: Macroeconomic Factors

CRR Factors 1963 7 14.16 -0.10 -0.04 16.20 -0.16 0.06
CRR Small 1963 5 21.02 -0.11 0.01 21.98 -0.22 0.03

Panel E: Statistical Factors (Excluding ‘Market’)

Statistical Factors: FF+IND 1963 10 12.21 -0.04 0.02 13.10 0.05 0.05
Statistical Factors: GHZ+IND 1964 10 12.86 0.14 -0.45 13.98 -0.28 0.26
Statistical Factors: KNS+IND 1963 10 13.44 0.00 0.12 12.43 0.24 -0.16
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Table 3: Volatility Commonality for Factor and Anomaly Portfolios: Robustness

This table presents robustness checks for results in Table 1 concerning the common factor volatility
(CFV) extracted from factor and anomaly portfolios. The method for computing CFV is the same
as that described in the header for Table 1 except as explicitly indicated in the various panels
of this table. Specifically, Panel A presents results for selected sets of portfolios when market
model regressions are estimated each month, rather than each year as in Table 1. To conserve
space, we report only certain representative factor sets. ‘Characteristics-Based Factors’ refers to
full set of such factors (‘Previous row + BAB and QMJ’ in Table 1). ‘CRR Factors’ set refers to
the CRR tracking portfolios excluding oil and consumption growth. The ‘10 Statistical Factors’
set of portfolios corresponds to the ‘Long set’ from Table 1. The ‘Anomalies’ set of portfolios
refers to the ’wide set’ of 92 anomaly portfolios covering 1980–2018. Panel B shows results with
no market adjustment (β̂ = 0) for statistical factors and a set of randomly generated anomaly
portfolios as described in the main text. Because beta estimates are fixed at zero we do not report
standard errors or R2-values for this panel. Panel C shows results for equal-weighted, as opposed
to value-weighted, Fama-French industry portfolio returns. Panel D shows results for Fama-French
factor returns computed using daily closing bid and ask prices from CRSP. See Table 1 description
for definitions of reported statistics.

Portfolios Sample N % Expl. ρ̂MKT ρ̂ADS β̂ SE(β̂) R2

Panel A: Monthly market model regressions

Characteristics-Based Factors 1963 9 78.54 0.83 -0.48 -0.12 0.09 27.86
GHZ Anomalies 1964 62 71.31 0.75 -0.37 0.10 0.14 23.51
12 VW Industries 1926 12 70.58 0.79 -0.36 0.95 0.12 69.82
CRR Small 1963 5 87.48 0.62 -0.32 0.10 0.21 11.38
Statistical Factors: GHZ+IND 1964 10 76.43 0.78 -0.43 0.05 0.23 26.85

Panel B: No Market Adjustment (β̂ = 0)

Characteristics-Based Factors 1963 9 74.25 0.84 -0.50 0.00 0.00 -
GHZ Anomalies 1964 62 72.90 0.77 -0.39 0.00 0.00 -
Statistical Factors: SCS+Ind 1973 10 70.43 0.77 -0.38 0.00 0.00 -

Panel C: Equal-Weighted Industry Portfolios

12 EW Industries 1926 12 78.52 0.87 -0.40 0.89 0.05 64.63
30 EW Industries 1926 30 72.60 0.84 -0.44 0.87 0.07 52.23

Panel D: Returns Constructed from Closing Bid and Ask

SMB, HML, CMA, RMW, UMD 1993 5 73.84 0.48 -0.36 -0.06 0.04 16.71
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Table 4: Common Factor Volatility: Monthly Data

The table shows statistics associated with volatility measures constructed from monthly market-
adjusted factor returns. Market-adjusted returns are based on rolling 60-month regressions
of monthly factor returns on the monthly market excess return. Monthly volatility series for
each factor are computed as rolling sums of squared daily residuals over the past 12 months.
The common factor volatility (CFV) measure equals the first principal component of the set
of market-adjusted volatility series. The first column specifies the set of factors. The second
column indicates the sample period. N equals the number of factors in the corresponding set.
The column ( % Expl.) shows the percent of total variance explained by CFV. ρ̂MKT denotes the
time-series sample correlation between CFV and market volatility, where the latter is computed
as squared daily within-period market factor returns. ρ̂ADS denotes the sample correlation of
FV with the business conditions measure of (Aruoba et al. (2009)). R2 denotes the pooled

mean of the R2−values for the market model regressions. β̂ denotes the pooled mean of market

beta estimates used to obtain residual returns across portfolios and years. Similarly, SE(β̂) de-
notes the pooled mean of the heteroskedasticity-robust standard error of the market beta estimates.

Portfolios Sample N % Expl. ρ̂MKT ρ̂ADS β̂ SE(β̂) R2

Panel A: Characteristics-Based Factors

SMB, HML, UMD, BAB 1930 4 77.99 0.74 -0.25 0.00 0.10 14.15
FF 5 + UMD 1963 5 70.52 0.50 -0.24 -0.06 0.09 13.77
FF5 + UMD, MGMT, PRF 1963 7 67.83 0.52 -0.29 -0.11 0.09 16.16
Previous Row + BAB, QMJ 1963 9 65.94 0.55 -0.28 -0.12 0.09 16.94

Panel B: Anomaly Long-Short Portfolios

GHZ Anomalies (wide set) 1980 93 58.92 0.50 -0.18 0.08 0.11 14.85
KNS Anomalies 1963 43 69.64 0.46 -0.22 0.07 0.12 20.40

Panel C: Industry Portfolios

12 VW Industries 1927 12 54.09 0.67 -0.26 0.96 0.08 71.96
30 VW Industries 1927 30 46.73 0.70 -0.26 1.01 0.10 64.10

Panel D: Macroeconomic Factors

CRR Small 1963 5 51.86 0.45 -0.30 0.04 0.10 6.24
CRR Underlying 1963 5 41.55 0.34 -0.36 -0.00 0.02 3.63

Panel E: Statistical Factors

Statistical Factors: FF+IND 1963 10 56.32 0.57 -0.28 0.05 0.17 17.98
Statistical Factors: GHZ + IND 1980 10 68.79 0.51 -0.25 0.12 0.16 20.06
Statistical Factors: KNS + IND 1963 10 66.32 0.54 -0.29 0.02 0.16 23.04
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Table 5: Fitted Factor Volatilities

This table shows the contemporaneous relations between monthly volatilities of the the five Fama
and French (2015) factors and UMD from Carhart (1997) with log(CFV) for the sample period
July 1967 through December 2018. Factor volatilities are measured using all daily returns for each
factor within a month. Panel A reports the results of contemporaneous ols regressions of natural
logarithms of the volatilities of each traded factor on the natural log of CFV:

log(σFk,t) = a+ b · log(CFVt) + et.

OLS t-statistics are reported in parentheses. Panel B reports the correlations of log factor
volatilities, log(σFk,t). Panel C reports the correlation matrix of the residuals from the regressions
reported in Panel A.

Panel A: Regression Results

Mrktrf SMB HML RMW CMA UMD

log(CFV) 0.59 0.54 0.70 0.78 0.73 0.69
(18.71) (16.36) (25.51) (32.21) (27.86) (24.24)

R2 0.35 0.29 0.49 0.61 0.54 0.47
N 665 665 665 665 665 665

Panel B: Raw Volatility Correlations

Mrktrf 1 0.72 0.62 0.55 0.52 0.62
SMB 0.72 1 0.54 0.50 0.50 0.55
HML 0.62 0.54 1 0.64 0.73 0.66
RMW 0.55 0.50 0.64 1 0.68 0.69
CMA 0.52 0.50 0.73 0.68 1 0.59
UMD 0.62 0.55 0.66 0.69 0.59 1

Panel C: Residual Volatility Correlations

Mrktrf 1 0.60 0.35 0.18 0.16 0.37
SMB 0.60 1 0.27 0.16 0.19 0.30
HML 0.35 0.27 1 0.21 0.44 0.35
RMW 0.18 0.16 0.21 1 0.26 0.34
CMA 0.16 0.19 0.44 0.26 1 0.17
UMD 0.37 0.30 0.35 0.34 0.17 1
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Table 6: Predicting Factor Volatilities

The table shows the results of predictive regressions of monthly (log) volatilities for the five Fama
and French (2015) factors and UMD from Carhart (1997) for the sample period July 1967 through
December 2018. For each factor, we predict the logarithm of volatility one month in the future.
Our regression specification is given by:

log(FV OLt+1) = a+ b′Xt + γ′Z + et+1,

where FV OLt is the given factor’s volatility measured over month t. X is a d-dimensional vector
of predictors where d ∈ {1, 2} with elements of X coming from the set of random variables
{log(FV OLt), log(CFVt), residt}, where residt denotes the given factor’s residual from the
regression described in Table 5. The vector Z includes additional lags of factor volatilities over
the past 3 months and over the past 12 months. Specifications (4) and (8) include the additional
lags in the fashion of an HAR model of Corsi (2009): Z = {log(FV OLt−2,t), log(FV OLt−11,t)}
in addition to log(FV OLt). Newey-West t-statistics with 12 month lags are reported in parentheses.

Panel A: MRKTRF VOL Panel B: SMB VOL
(1) (2) (3) (4) (1) (2) (3) (4)

intercept 0.01 0.01 0.00 -0.08 0.00 0.00 0.00 -0.09
(0.12) (0.07) (0.13) (-2.01) (0.04) (0.07) (0.06) (-2.09)

resid -0.31 -0.26 -0.31 -0.26
(-6.61) (-7.07) (-4.03) (-3.59)

log(FV OL) 0.66 0.87 0.59 0.56 0.79 0.60
(16.78) (19.75) (9.25) (14.01) (12.90) (7.14)

log(CFV ) 0.51 0.42
(8.80) (8.00)

R2 0.44 0.26 0.46 0.48 0.32 0.18 0.34 0.36
N 660 660 660 654 660 660 660 654
HAR Lags no no no yes no no no yes

Panel C: HML VOL Panel D: RMW VOL
(1) (2) (3) (4) (1) (2) (3) (4)

intercept 0.00 0.00 0.00 -0.09 - 0.00 0.00 -0.00 -0.10
(0.07) (0.07) (0.09) (-2.77) (-0.03) (0.01) (-0.01) (-4.32)

resid -0.27 -0.21 -0.35 -0.25
(-4.56) (-3.79) (-4.75) (-3.97)

log(FV OL) 0.71 0.84 0.49 0.74 0.88 0.39
(16.55) (17.09) (7.70) (16.10) (17.34) (5.89)

log(CFV ) 0.60 0.68
(9.89) (11.48)

R2 0.50 0.35 0.52 0.55 0.55 0.47 0.56 0.63
N 660 660 660 654 660 660 660 654
HAR Lags no no no yes no no no yes
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Table 7: Predicting Factor Volatilities (continued)

Panel E: CMA VOL Panel F: UMD VOL
(1) (2) (3) (4) (1) (2) (3) (4)

intercept 0.00 0.00 0.00 -0.08 -0.00 0.00 -0.00 -0.05
(0.01) (0.03) (0.03) (-2.88) (-0.03) (0.00) (-0.02) (-1.53)

resid -0.30 -0.20 -0.28 -0.23
(-4.62) (-3.42) (-5.74) (-5.06)

log(FV OL) 0.72 0.86 0.42 0.73 0.86 0.65
(15.40) (15.39) (7.26) (21.37) (20.85) (10.21)

log(CFV ) 0.64 0.60
(9.18) (9.96)

R2 0.53 0.40 0.55 0.59 0.54 0.36 0.56 0.57
N 660 660 660 654 660 660 660 654
HAR Lags no no no yes no no no yes
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Table 8: Return Forecasting Regressions

The table analyzes the stock-return forecasting information associated with the common factor
volatility measure (CFV). The dependent variable is the cumulative excess return on the market
portfolio over H periods, denoted Rt+1,t+H . The regression model is

Rt+1,t+H = α+ βdpt + γVOLt + εt+H ,

where the predictor variable dpt is the log dividend-price ratio and the variable VOL denotes
either the CFV series (results in Panel A), or stock market volatility MVOL (results in panel B).
All regressions employ overlapping data. Reported t-statistics are based on Newey-West standard
errors with a number of lags equal to 2 × H − 1. The sample begins in 1927 and ends with the
last year over which the H-period ahead excess return can be computed given that the data end
in 2017. For example, at the four-year horizon (H = 4), the sample period is 1927–2014, so that
the final four-year excess return covers the period 2014–2017.

H (years) 1 2 3 4 6 8 10 12

Panel A: Common Factor Volatility (CFV)

β̂ 0.17 0.31 0.38 0.49 0.98 1.64 2.38 3.58
t-statistic 3.46 3.68 3.63 4.04 5.18 5.90 6.08 6.75

γ̂ 0.08 0.13 0.11 0.15 0.33 0.48 0.75 1.36
t-stat 2.59 2.58 1.50 2.01 2.64 4.24 3.05 5.28

R2-value (%) 13.96 21.29 20.43 22.41 37.77 49.60 55.55 59.88

Panel B: Stock Market Volatility (MVOL)

β̂ 0.14 0.28 0.35 0.44 0.89 1.50 2.20 3.14
t-statistic 2.96 3.22 3.29 3.33 4.30 4.86 5.76 5.23

γ̂ 0.04 0.08 0.05 0.07 0.20 0.31 0.59 0.81
t-stat 1.66 1.84 0.77 0.77 1.55 3.42 3.99 6.57

R2-value (%) 11.00 19.27 18.69 20.31 35.88 48.03 56.96 55.29
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Table 9: Common Volatility: Relations with other Uncertainty Measures

The table shows statistics pertaining to the persistence and correlations between CFV and a set
of volatility, uncertainty, and financial variables. φ̂1 and φ̂6 denote sample autocorrelations at lags
one and six, respectively. φ̂61 equals the implied correlation at lag six assuming that the variable
follows a covariance stationary AR(1) process with AR(1) coefficient equal to the sample estimate
φ̂1. d̂ denotes an estimate of the long-memory parameter d associated with each series based on the
Exact Whittle method. ρ̂(CFV ) is the sample correlation of the corresponding variable with CFV.
ρ̂(∆FV ) denotes the sample correlation of changes in the corresponding variable with changes in
CFV. ρ̂LR(CFV ) is an estimate of the long-run correlation between the corresponding variable
and FV using the method of Müller and Watson (2018), and the table provides the associated
90% confidence sets for this parameter. Panel A presents results for our main equity volatility
measures, including common factor volatility (CFV), market volatility (MVOL), and common
idiosyncratic volatility (CIV). Panels B and C cover alternative financial and economic uncertainty
measures, respectively. Panel D shows results for other benchmark financial variables. Long-run
correlation estimates are omitted for the variables VIX and VRP due to insufficient sample length.

Persistence Measures Co-Movement Measures

Variable φ̂1 φ̂6 φ̂61 d̂ ρ̂(CFV ) ρ̂(∆CFV ) ρ̂LR(CFV ) 90% CS

Panel A: Main Equity Volatility Measures

CFV 0.83 0.61 0.32 0.69 1.00 1.00 1.00 -
MVOL 0.67 0.40 0.09 0.52 0.86 0.76 0.90 [0.71 0.97]
CIV 0.91 0.62 0.58 0.72 0.88 0.79 0.87 [0.65 0.96]

Panel B: Financial Uncertainty Measures

FISTR 0.85 0.73 0.37 0.72 0.43 0.15 0.40 [-0.03 0.71]
FINU 0.92 0.25 0.60 0.80 0.57 0.59 0.13 [-0.41 0.65]
NVIX 0.83 0.52 0.32 0.61 0.57 0.36 0.49 [0.01 0.81]
VIX 0.64 0.19 0.07 0.55 0.73 0.60 0.00 -

Panel C: Economic Uncertainty Measures

MACU 0.95 0.44 0.74 0.91 0.37 0.31 -0.00 [-0.51 0.50]
REALU 0.91 0.42 0.56 0.56 0.08 0.18 -0.27 [-0.71 0.34]
EPU 0.69 0.54 0.10 0.64 0.43 0.28 0.42 [-0.01 0.72]

Panel D: Other Financial Variables

KJ 0.92 0.70 0.61 1.05 -0.05 -0.20 -0.12 [-0.67 0.48]
VRP 0.25 0.11 0.00 0.35 -0.10 -0.31 0.00 -
DEF 0.90 0.61 0.52 0.64 0.74 0.17 0.71 [0.34 0.90]
TERM 0.85 0.39 0.39 0.63 0.21 -0.05 0.25 [-0.27 0.64]

52



Table 10: Potential explanations for the commonality in volatility

This table examines potential explanations for the commonality in volatility. Panel A presents
regressions of log CFV on measures of volatility derived from earnings announcements. In each
quarter, we estimate earnings surprises relative to median analyst expectations (SUEIBES) and a
seasonal random walk model for earnings (SUESRW ). σ2(SUE) is the first principal component
of log variances of earnings surprises within each Fama-French 12 industry. σ2(CAR) is the first
principal component of the log variance of the cumulative abnormal (stock - market) return in the
three day earnings announcement window within each Fama-French 12 industry. The first four
specifications are in levels. The next four specifications are in innovations of all left and right
hand side variables. Innovations are measured from an ARMA(1,1) model for each series. Panel
B presents results of regressions of innovations in CFV on innovations in measures of financial and
real options. Book (Mkt) leverage is total long and short term debt divided by book (market) value
of total assets. Book (Mkt) operating leverage is operating expense divided by book (market) total
assets, Market total assets are market equity + total assets - book equity. M/B is the ratio of
market to book equity. All financial variables are averages across all firms reporting earnings in the
quarter for which volatility is measured. Returns are the average returns of all firms in the quarter
over which volatility is measured. Standard errors are Newey-West with 12 lags for regressions in
levels and 3 for innovations.

Panel A: Earnings surprise and announcement return volatility

Levels Innovations

(1) (2) (3) (4) (1) (2) (3) (4)

Intercept -3.18 -3.25 -3.25 -3.25 -0.00 -0.00 0.00 -0.00
(-49.24) (-59.76) (-106.35) (-107.57) (-0.05) (-0.05) (-0.01) (-0.02)

σ2(SUEIBES) 0.00 0.03
(0.12) (2.94)

σ2(SUESRW ) 0.05 0.01 0.02 0.00
(4.34) (0.77) (2.05) (0.81)

σ2(CAR) 0.10 0.10 0.12 0.12
(10.27) (10.07) (16.16) (15.45)

R2 0.00 0.18 0.71 0.71 0.04 0.03 0.62 0.62
N 136 176 176 176 136 176 176 176
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Table 10: Potential explanations for the commonality in volatility (continued.)

Panel B: Real and financial options

(1) (2) (3) (4) (5) (6) (7)

Intercept -0.00 -0.00 0.03 0.02 0.03 -0.05 -0.05
(-0.04) (-0.03) (1.48) (1.08) (1.36) (-0.92) (-0.95)

Financial Leverage (Book) 2.13 1.43
(0.98) (0.82)

Operating Leverage (Book) 0.59 0.11
(2.16) (0.27)

Returns -0.83 -0.58 -0.78 -0.85 -0.84
(-3.46) (-2.22) (-3.04) (-3.55) (-3.47)

M/B 0.03 0.03
(1.71) (1.72)

Financial Leverage (Mkt) 3.55
(1.58)

Operating Leverage (Mkt) 0.25
(0.86)

R2 0.01 0.01 0.14 0.16 0.15 0.15 0.16
N 188 188 188 188 188 188 188
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Fig. 1: Commonality in Characteristics-Based Factor Return Volatilities

The figure plots quarterly time series of volatility measures for common asset pricing factors.
Panel A displays quarterly volatility series for seven asset pricing factor returns. These include
the market excess return (MKT), the Fama-French size (SMB), value (HML) factors, investment
(RMW) and profitability (CMA) factors, along with the management (MGMT) and performance
(PRF) mispricing factors of Stambaugh and Yuan (2016). Raw variances are computed as the
sum of squared daily returns for each factor during the corresponding quarter. The plot depicts
the associated volatility on an annualized basis. Panel B depicts the volatility of the residuals of
various long-short factors with respect to market returns. Daily residual returns for each factor are
based on a single factor (market) model regression estimated over each calendar year. Annualized
residual volatility measures for each quarter are computed based on the sum of squared daily
residuals. Panel B also depicts a measure of common volatility (‘Avg. Vol.’), computed as the
(equal-weighted) average of the individual market-adjusted factor volatilities.
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Fig. 2: Industry and Anomaly Return Volatilities

This figure plots quarterly time series of market-adjusted volatility measures for a set of indus-
try portfolios and a set of long-short anomaly portfolios. Panel A displays time series of quarterly
volatility measures for the market-adjusted returns for the Fama-French 12 value-weighted industry
portfolios. Volatility measures are based on the sum of squared daily returns within the correspond-
ing quarter and are annualized. Panel A also depicts a common volatility measure computed as the
(equal-weighted) average of the individual market-adjusted factor volatilities. Panel B plots quar-
terly volatility measures for raw returns for a randomly selected subset of 25 among the anomaly
portfolios analyzed in the paper. Anomaly market-adjusted return volatilities are displayed as col-
ored dashed-dot lines. The figure also shows a common volatility measure for these series computed
as the (equal-weighted) average of the individual anomaly volatility series. Daily market-adjusted
returns for both industries and anomaly long-short portfolios are based on a single factor (market)
model regression estimated over each calendar year.
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Fig. 3: A Comparison of Alternative CFV Series

This figure shows alternative versions of the common factor volatility (CFV) time series extracted
from different sets of factor and anomaly portfolios. Each CFV series is constructed as the average
of the residual volatility, based on a market model regression, across factor or anomaly portfolios in
the corresponding set. Results are included for the full set of characeteristics-based factors, a large
set of anomaly returns, 12 value-weighted industry portfolios, and a set of 10 statistical factors.
The sample period is 1965–2018 quarterly.
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Fig. 4: Characteristics-Based Factor Correlations

This figure shows plots of raw and market-adjusted (residual) correlations for characteristics-based
factors. Panel A plots quarterly time series of pairwise correlations for the following characteristics-
based factors: SMB, HML, RMW, CMA, and UMD. Correlation values each quarter are computed
as the sample correlation of daily factor returns within the quarter. To facilitate comparison of the
dynamics of correlations across factor pairs, each pairwise correlation is shown as the de-meaned
value relative to the time series average for the correlation. Panel B displays similar information,
except based on the (daily) residuals of factor returns from market model regressions estimated
each calendar year.
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Fig. 5: Common Factor Volatility for Alternative Ranges of Statistical Factor Decomposition

This figure compares time series for common factor volatility (CFV) obtained from different sets
of statistical factors. We first apply the RP-PCA approach to obtain statistical factors using an
underlying set of daily portfolio returns for the GHZ anomaly portfolios and 30 industry portfolios.
Statistical factor returns are normalized to average 20% annually unconditionally. The figure plots
a simple measure of common volatility computed as the average of individual factor volatility series
for alternative groups of 10 factors. The first group consists of the first ten factors based on the
RP-PCA criterion. The next group consists of factors 10-20, the third group consists of factors
40-50 and the final group consists of factors 60-70. The figure plots the quarterly time series of
common volatility for each group.
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Fig. 6: Common Factor Volatility, Market Volatility, and Common Idiosyncratic Volatility

This figure compares time series for common factor volatility (CFV), market volatility (MKT VOL),
and common idiosyncratic volatility (CIV). The CFV series is based on the factor set of 10 statistical
factors. CIV is constructed following Herskovic et al. (2016). Market volatility is measured using
the sum of squared daily returns for the Fama-French market factor. Panel A plots annual time
series for each volatility measure. To facilitate comparison, Panel A plots the standardized value of
the natural logarithm of each volatility measure. Panel B shows the deviations of market volatility
and CIV from CFV, measured as the difference between, e.g., the standardized value of log market
volatility and the standard value of the log of CFV.
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Fig. 7: CFV and Factor Vol

This figure shows histograms of betas (Panel A) and R2 (Panel B) for sets of factors’ regressions
of the following form:

log(σFk,t) = a+ β · log(CFVt) + εt,

where σFk,t denotes factor k’s volatility in month t and CFVt denotes the quarterly measure of
Common Factor Volatility. All monthly log volatilities have been linearly detrended and normalized
to have mean zero and standard deviation of 1. In all cases the sets of portfolios and dates used to
generate the histogram corresponds to the portfolios described in Table 1.
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Fig. 8: Residuals Predict Factor Volatilities

This figure shows histograms of coefficient estimates and corresponding t-statistics for predictive
regressions of one-month ahead volatilities using residuals and lagged volatilities of each factors’
own-volatility. Residuals are taken from the full sample regression of portfolio log volatilities on
log of CFV:

log(σkt ) = a+ β · log(CFVt) + εt.

We then use the residuals from the above regression to forecast future values of log(σkt+1) one month
in the future using the following specification:

log(σkt+1) = a+ λ · rk,t + β ·
∑
l∈H

log(σkt−l+1,t) + εt,

where rk,t denotes the residual from the regression of volatilities on CFV and σkt−l+1,t denotes
volatility over the period t − l + 1 through t. Using the HAR model for factor volatilities with
H = {1, 3, 12} controls for past values of each factors’ past volatility. All monthly log volatilities
have been linearly detrended and normalized to have mean zero and standard deviation equal to
one.

Panel A: Residual Coefficients
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Fig. 9: The common volatility in macroeconomic factors and in their underlying series

This figure compares time series in the monthly common volatility in CRR factor mimicking port-
folios (‘CRR’), their underlying macroeconomic series (‘CRRunder’), and 30 VW industries (‘In-
dVW’) constructed in Table 4.
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